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(Received Fehriiory 17, IY81) 

The thermodynamic functions of a simple liquid are expressed in terms of analytical expres- 
sions within the framework of the Mean Field Approximation (MFA), whereby the classical 
model is improved in the following aspects: 

i )  I t  is shown that accounting for nonadditive forces between molecules in the liquid im- 
proves considerably the quantitative predictions of the theory. 

ii) An analytical formula for the free volume on density dependence is derived on the ground 
of harmonic oscillator approximation. 

iii) A partition function is suggested which properly dcscribes the state of motion of a single 
atom at various temperatures and densities. 

It appears that a proper qulitative description of melting necessarily requires a different 
lattice for the fluid-and for the solid phase. Only under this assumption the temperature course 
of the thermodynamic functions of the undercooled melt closely resembles existing expcrimental 
evidence. 

I INTRODUCTION 

It is widely accepted at present, that a proper description of the thermo- 
dynamical properties of a liquid could be obtained in two principally dif- 
fering ways, namely, the method of pair correlation functions and the various 
modifications of the lattice gas model of a liquid. The former method, al- 
though rigorous in its foundations, yields results which are obtained at the 
expense of huge computational efforts and are thus difficult to operate with. 
Moreover, this method seems practically limited within the scope of simple 
nonassociated liquids with additive pair interactions between the particles. 
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26 A. MILCHEV AND 1. GUTZOW 

The authors intention in the present paper, however, is to suggest analytical 
formulae for the thermodynamic functions which could provide a deeper 
insight into the physics of a simple liquid and, moreover, bridge the gap 
between simple- and polymer liquids, so that an extension of the present 
consideration over polymer and associated melts could be feasible. 

Model descriptions of the properties of simple liquids have been inten- 
sively developed recently whereby also the thermodynamical behaviour of 
some associated liquids, e.g. of glassforming melts, has gained importance 
within the scope of theoretical research. Most of these investigations are 
based on various modifications of the cell- and lattice gas models of a simple 
liquid while elements allowing for the complex structure of polar, orienta- 
tionally dependent associated liquids are taken additionally into account. l~ 

However, there is no liquid state theory at present which could provide a 
satisfactory description of the properties of the system within the whole 
liquid range and even such a common physical phenomenon as the process 
of melting at a microscopical level still remains a mystery. Below the melting 
point T, the thermodynamic behaviour of a simple undercooled melt which 
preserves its metastable equilibrium has not been theoretically treated due 
to the lack of experimental data over this hardly accessible region. 

In the present work we suggest a transparent model of a simple liquid 
whereby predominantly the following aspects of the problem have been 
considered : 

I) The Mean Field Approximation (MFA)4 has been extended in order 
to deal with varying strength of the lateral interactions between the atoms 
(nonadditivity of the energy bonds) in dependence on the number of nearest 
neighbours which are actually present in the first coordination sphere of any 
dcliberately chosen atom. Thus a certain degree of long-range disorder may 
be introduced despite the use of a periodic lattice in the statistical treatment 
of the lattice gas. 

11) An analytical expression for the “free volume” as well as for the non- 
configurational partition function which describes a gradual transition in the 
state of motion of a single particle from quantum into classical oscillations 
and further into free translational movement with growing temperature. 

111) Results for the critical parameters obtained in the framework of the 
present model are compared with those of earlier treatments and then some 
important conclusions are suggested on the ground of detailed investigation 
of the thermodynamic functions of undercooled melts at 0 I T I T,. 

During the thirties some attempts to suggest an atomistic picture of the 
melting transition gained prominence although they can be hardly accepted 
in view of the new information available at present. Born’s conjecture 
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THERMODYNAMICS OF A SIMPLE LIQUID 

of vanishing shear modulus5 at the melting point has been subsequently dis- 
proved by careful measurements of this parameter as function of tempera- 
ture, right up to the melting point. The lattice gas theories of Frenkel,6 
Bresler3 and Lennard-Jones and Devonshire7 appear inadequate since the 
first can be interpreted as yielding a second-order phase transition while the 
second and the third predict the existence of a critical point of melting which 
contradicts recent results of both theoretical and experimental research.* 
Moreover, generally lattice gas models predict no more than one phase 
transition which in fact is identified as that of condensation. In the present 
approach after the validity of the theory is verified in the region of the liquid- 
gas transition the “missing” solid-liquid phase transition is introduced ad hoc 
by equating the Gibbs free energy of an Einstein crystal to that of a liquid 
described in the framework of the model. Similar methods of such somewhat 
artificially fixing of the melting temperature T, have been used earlier by 
several authors.’-’ 

21 

II DESCRIPTION OF THE THEORETICAL MODEL 

1 

In line with the basic idea of the model used in this paper, namely that the 
liquid is formed from a hypothetical crystalline lattice by the introduction of 
certain amount of crystal defects (holes), one may determine the degree of 
disorder in the system considering only the immediate surrounding of a 
given molecule. It has long been known from X-ray diffraction studies that 
liquids exhibit a certain order within small ranges, i.e. that the pair distribu- 
tion functions which give the probability density of finding another molecule 
in a certain volume element at some distance from a given molecule in a 
solid or in its melt do not differ considerably for small distances.” Since the 
most probable distances of the nearest neighbours lie within a very narrow 
interval one may introduce also for liquids the concept of coordination 
spheres. The number of neighbouring molecules whose centers lie within the 
coordination sphere is given by the coordination number Z. In an ideal 
crystal the coordination number Z is fully defined by the geometry of the 
lattice, whereas for the melt of the same crystal this value has only statistical 
meaning. Evidently, in the liquid one may observe in principle a variety of a 
coordination numbers: Z, Z - 1, Z - 2, . . . (cf. Fig. 1) although the proba- 
bility of finding an atom whose nearest neighbours are far less than Z should 
be extremely small. A coordination number 2 + 1 appears impossible since 
an additional atom may be inserted in the coordination sphere of a dense 
(hexagonal) packing only at the expense of a considerable extensibn of the 
latter and this demands a great amount of energy. Consequently the degree of 

Lattice gas statistics with nonadditive energy bonds 
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2s A. MILCHEV A N D  1. GUTZOW 

m = 6  5 4 3 2 1 0 

n =  6 5 4 3 2 1 0 
FIGURE I 
particle 0. resp. of a hole 0 in  a 2D-licxagonal latticc. 

Various possible degrees of occupation of the first coordination sphere of B 

order in such a system is expressed by the probability for a certain atom 
to be surrounded by Z nearest neighbours and this probability tends to 
unity for the state of ideal order when the temperature T goes to zero. 

It is an easy task to find the probability distribution of the various coordina- 
tion numbers to be met in a simple liquid, provided the excess of the melt 
volume over the crystal volume is known. In the lattice gas model where the 
liquid volume is divided into cells such that the number of cells is larger 
than the number of particles, and each cell is centered at one site of a lattice, 
the ratio qiq/K0, is simply related to the average concentration of N particles 
over the M sites of the lattice: 8 = N / M ,  that is I/sol/l.;is = 8. If now, accord- 
ing to the MFA, one assumes that the probability of a single site to be occu- 
pied by a particle does not depend on whether the adjacent sites are occupied 
or free, the probability P,  for a certain atom to have only rn of Z possible 
nearest neighbours actually present at their sites should be given by: 

Pm(8) = ( ~ ) ' 8 ' " . ( 1  - 8)z-m 

where 8 is the probability of a site to be occupied, 1 - 8-to be empty, and 
(3 yields the number of ways such a coordination sphere can be filled. For a 
typical nonassociated liquid such as liquid argon one has at the melting 
point 8 = Ko,/Kh = 0,88 and for solid Ar 2 = 12. 

In Figure 2 the probability P ,  of different coordination numbers as well 
as the total probability distribution cf=, PI are plotted for liquid Ar near 
the melting point and thus a mean coordination number m = 10.6 is ob- 
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THERMODYNAMICS OF A SIMPLE LIQUID 29 

m- 
FIGURE 2 Coordination number distribution P,, in liquid Ar near the melting point (scc 
inset). The integral probability distribution Z:=, P,, vs. actual coordination number m is also 
shown. 

tained in close agreement with the experimental result of 10.513 and with the 
values 10.714 and 10.815 used earlier by other investigators. From Figure 2 
it is also evident, that coordination numbers less than eight do not practically 
occur, in line with what was said at the beginning of this section. 

Consider now the partition function Q(N, M, T )  of N atoms which may 
occupy M sites and suppose only nearest neighbours interactions are taken 
into account. One has in this case16 

Q(N, M ,  7) = q(T)N .gl exp - - + g2 exp - - + .. [ ( 2) ( kE;) 

(where E l  is the energy of the lth configuration, g1 is the number of de- 
generacy and q( T )  is the partition function of a single atom at temperature 
T).  In the MFA (2) is replaced by: 

Q ( N , M , T ) = q ( T ) N ( g ,  + g 2  + . " + g l  + - . . ) e x p ( - s )  

= q ( T > N .  G(N,  M). exp( - 2) (3) 
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30 A. MILCHEV AND 1. GUT'ZOW 

Here G(N,  M )  is the total number of configurations that the system may 
possess G ( N ,  M )  = M ! / N ! ( M  - N ) !  and E, is the average value of the 
energies El. 

In order to calculate the mean configurational energy E ,  for a certain 
density O one should notice first that all N particles are in principle subdivided 
into several fractions N ,  (exactly Z + 1 )  of particles with an actual coordina- 
tion number m = 0, 1 ,2 , .  .. , Z - 1,Z. These fractions are given by the 
binomial distribution ( 1 ) :  

N ,  = N . ( , Z ) . O " . ( l  - Q)'-, (4) 
Suppose further that generally the strength W, of an energy bond which 
connects a certain atom of the mth fraction with the nearest neighbours in 
the first coordination sphere depends on the degree of filling m. The con- 
figurational energy E,(O) becomes then simply: 

(:) ( 5 )  
l Z  
2 m = O  2 m = O  

E,(d) = - 1 m .  W;Nm = - c mW, Qm(l - Q)z"" 

where W, labels the energy bond in the m-fold occupied coordination sphere 
( W, = 0-no bonds existing) and a factor of 3 emerges because each bond 
has been counted twice. 

It is an easy task to prove that in the case of equal bonds where W, = W 
(m = 1,2, ..., 2) Eq. (5) yields a familiar result for the configurational 
energy EC(@ in terms of the MFA: 

where As is taken to be the sublimation heat of a system with first neighbour 
interactions. 

Equation (5) may be easily transformed into a more suitable form 

with 

Equation (7) is the final expression for the configurational energy which 
should be inserted in the partition function (1) and further dealt with, pro- 
vided the values of w, are known. However, a major simplification of (7) 
may be achieved if one assumes a linear dependence of W, on m as a first 
correction to a constant lateral bond energy. In this case all coefficients 
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T H E R M O D Y N A M I C S  OF A S I M P L E  

in (7’), but a,  and mZ, vanish and one obtains: 

Z N  
2 

E,(e) = ~ [(z - i)(w, - wl)e2 

where for W, = W, = W again expression (6) follows. 
A question which immediately arises is to what extent the bond energy 

between two nearest neighbours in a lattice depends on whether neighbouring 
sites around are occupied or free, or otherwise, is a single energy bond in the 
bulk of the condensed matter the same as in the gas phase. Theoretical in- 
vestigations of the stability of very small crystals show, that the mean bond 
energy W in a crystal where the configurational energy is represented in 
terms of first neighbour interactions is essentially smaller than the dissocia- 
tion energy D, of a diatomic gas molecule of the same substance.” For the 
ratio D2/ W one obtains the value 2.85 which agrees favourably with the 
experimental data of 2.21 + 4.07 for metals.I7 At the same time the distance 
between nearest neighbours in crystals is about 15% larger than the inter- 
atomic distance in the diatomic molecule. It is also generally known, that 
the distance between the surface lattice plane and the next lattice plane is 
smaller than the distance between the second and the third ones, the latter 
distance being practically the same as in the bulk of the crystal.’* As a plau- 
sible explanation of these effects one could argue that in the diatomic 
molecule both atoms interact with each other only and their valence electrons 
are concentrated to form only one bond, whereas when an atom is connected 
with more than one partner, as it is in the crystal, then the same number of 
valence electrons take part in the formation of a larger number of bonds. 

Within the framework of the present lattice-gas model such variable 
(nonadditive) bonds between the constituents of the system in dependence 
of their actual surrounding at any density 8 is used to account for the dis- 
tortion in the long-range order, i.e. for the actual displacements of the atoms 
with respect to the regular arrangement of their sites in a periodic grid. It is 
clear that lattice gas statistics may be developed only on the ground of a 
(hypothetical) periodic lattice imposed on the system so as to provide a 
coordinate system while the state of distorted long range order is reflected 
by the modification (7) of the formula (6 )  for the configurational energy E, .  

As a convenient measure of how rapidly W, descends with increasing 
m the ratio p“ = W,/W, may serve which in the following consideration will 
be briefly called a parameter of nonaddivitity. With the help of p” and W,, 
as well as with W, linearly dependent on rn, Eq. (8) converts to 

which is the form we shall use throughout in this paper. 
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32 A. MILCHEV AND 1. GUTZOW 

0 0 2  O X  0,6 0,8 1 
e- 

FIGURE 3 Dependence of configurational energy E,  on relative density 0 in a system with: 
additive (a = 1)-1; and nonadditive (j = 1.5)-2, (a = 2)-3 pair interactions within the frame- 
work of MFA. 

In Figure 3 the configurational energy E,(@ of the system for additive 
( p  = 1)-and nonadditive (p" > 1) energy bonds is shown. We shall like to 
point out here that the plot of Eq. (9) practically coincides with that of the 
more general Eq. (7), provided p" is kept the same, i.e. for a certain degree of 
nonadditivity the configurational energy is highly insensitive to the genuine 
W, on rn relationship. From the quite general demand that the configura- 
tional energy remains negative (W < 0) within the whole density interval 
0 2 0 i 1 the maximal value of p" may be determined. In particular for the 
case of W, linearly dependent on rn one readily obtains from (9) p",,,,,, = 2 
which agrees reasonably with the ratio D, JW quoted above. Evidently 
bmin is equal to unity thus reflecting the case of full additivity of the energy 
bonds. Although one could in principle estimate p" by means of quantum 
mechanical computations in the present work we use it as an adjusting 
parameter. 

2 

Dealing with the configurational statistics we have so far neglected the 
influence of q(T) in Eq. (1) on the thermodynamic characteristics of our 
system, i.e. we have assumed the state of each particle within its own cell to 

The nonconfigurational partition function q(T) 
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THERMODYNAMICS OF A SIMPLE LIQUID 

be independent of the density 8. It is intuitively clear, however, that at high 
densities (0 = 1) each particle will behave as an oscillator in the potential 
well of the nearest neighbours, while at very low densities (8 = 0) the particle 
is expected to move freely in its cell. The most widely accepted theory of the 
liquid state at present which accounts for the change in the state of motion 
of a single particle is the free volume theory of Lennard-Jones and Devon- 
shire” which has been modified to allow for empty cells and has been used 
by several authors.20-26 In all investigations so far a variety of linear inter- 
polation formulae has been used in order to approximate the complex 
free volume V, on 8 dependence as revealed by the tables of Lennard-Jones 
and Devonshire. l9 In the present paper a simple analytical expression for 
the free volume is derived which accounts for the density 0 at any temperature 
and properly describes the transitions from harmonic vibrations into free 
movement with the variation of 8 and T .  

The free volume which the atom actually occupies within the cell is 
defined by :26 

33 

where 

is the pair interaction potentials and A denotes the volume of the cell. 
Summing the Lennard-Jones potential over 0 ’ Z nearest neighbours which 
are smeared on-a sphere with radius a ( $ 7 ~ ’  = A), and differentiating twice 
with respect to r, one obtains for the force constant f of a simple harmonic 
oscillator2 

where the following approximation is made: 

In ( 1  1 )  (r is the “hard core” radius of the Lennard-Jones potential and for 
hexagonal close packing V ,  = No’. Hence, one has 
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34 A. MILCHEV A N D  I .  GUTZOW 

With the help of (13) the characteristic temperature OE of an Einstein crystal 
may be immediately determined as: 

e , = - . - ( )  h 1 112 

k 21-c rn 

Inserting (12) into (10) and performing the integration one readily obtains 
for the free volume V,: 

where 

It may be directly proved, that for strong lateral bonds (W/kT % 1) and at 
high densities 8 z 1 Eq. (15) gives V’ = (21-ckT/f)~” which is just the volume 
occupied by a 3D harmonic oscillator (classical case), while for high tem- 
peratures and low densities 0 z 0 each particle moves freely within the cell 
volume V, = A = $nu3. In Figure 4 the dependence of the ratio In (Vr(U)/A) 
on 0 is shown at kT/W = 1.3. 

From Figure 4 it is seen, that the plot of Eq. (15) closely resembles the 
tabulated V, on tl relationship of Lennard-Jones and Devonshire.” At high 
temperature (T FZ T,,), however, Eq. (15) predicts a greater free volume, than 
that which follows from the Lennard-Jones and Devonshire theory, i.e. 
the particle may come closer to the cell borders which seems more realistic 
and is due to the finite potential barrier between neighbouring cells in the 
oscillator approximation. With (15) the partition function qclass of a single 
particle at not too low (not “quantum”) temperatures is expressed as: 

where A = h/(21-cnmkT)”~ denotes the de Broglie thermal wavelength. 
Our final step should be to construct a more general expression for the 

configurational partition function q(T) which would be valid also at very 
low temperatures, thus reflecting the transition from classical to quantum 
behaviour of the particle. A very convenient interpolation formula, em- 
ployed previously in the theoretical treatment of hindered rotation,16 
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THERMODYNAMICS OF A SIMPLE LIQUID 35 

0 0.5 1 e- 
FIGURE 4 Dependence of the free volume V’ on density of the system: l-ace. to Eq. (15) 
of this paper, 2-linrar interpolation formula of O n o  (1947). 3-acc. to Cernuschi and Eyring 
(1939). 0 -  tabul;ited results o f  Lennard -Joncs and Devon4iire (1937). 

is used in the present paper to serve for this purpose. We set 

(17) 
qquant. osc. 

qclass. osc. 
q(T)  = qclass . 

where 

- eXp( - 3 8 ~ / 2 T )  
(1 - exp( - &/T))3 ’ qqumt.osc. - 

and qclass. osc. = ( T / e E ) 3 .  At high temperatures the ratio qquant. osc./qclass.osc. 
tends to unity and therefore q(T)  x (Iclass. with the vibrations gradually 
converting into translational degrees of freedom (cf. Eq. (15)), whereas for 
7’z 0 qclas.. z qclass.o.c. and q ( T )  approaches the partition function of the 
3D Einstein crystal. With (17) which is the central statement in this section, 
some important theoretical consequences may be derived. For the non- 
configurational internal energy &ib, specific heat Cvib and entropy S v i b  one 
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36 A. MILCHEV AND I.  GUTZOW 

obtains from (17) and (16): 

Cvib - -- 
R 

S v i b  
~ = K - [T . In 4N]N,M 

R dT 

%El2 T - tGIT 
-t th &/2T $/2 exp(iO,?/T) . f i / t O j ? )  . Erf &@IT) - 1 

(20) 

where R = kN and t = 2mz2 . a2 . k/h2 is used for abbreviation. 
In Figure 5 the nonconfigurational specific heat Cvib(T) is plotted against 

the reduced temperature TIT, while the degree of coverage of the lattice 8 
is kept as a constant parameter. The curves in Figure 5 show the contribution 
of harmonic oscillations of the system of particles to the heat capacity 
Cvib(T) to depend sharply on the density parameter 0. Consequently one 
could maintain that the validity of the various theoretical models neglecting 
the y(T) on fl dependence ( e g  as in 2o and similar expressions) is reduced to a 
very narrow temperature interval where the heat capacities for, say, % M 0 
and 8 = 1 do not greatly differ. 

From Figure 6 which represents the Svib(T) on T relationship for various 
0 it becomes evident that the entropy gain produced by the introduction 
of holes is twofold. Firstly there is a configurational entropy of mixing (cf. 
Eq. ( 3 )  G ( N ,  M))  between particles and holes and secondly-a nonconfigura- 
tional contribution, due to an increase of the volume available for individual 
particle motion if a particle is located besides holes. 

It is also seen from Figure 6 that at  temperatures below the critical one 
T. T,  < 1 the configurational and vibrational contributions to the entropy 
of vapourization AS,, = ASconf + ASvi,, have the same order, as far as for 
simple liquids AS,,/R z 9.2 (Trouton’s rule). 
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FIGURE 5 
T!T, at various densities 0 of the system. 

Dependence of the nonconfigurational heat capacity C, on reduced temperature 

FIGURE 6 Dependence of the nonconfigurational entropy S ,  on reduced temperature 
T/T, (the density U of the system is given as a parameter). 
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38 A. MILCHEV AND I .  GUTZOW 

3 Equations of state and critical data 

From the partition function ( 3 )  and making use of (9), (16) and (17) all 
thermodynamical functions of the system may be readily obtained. The 
internal pressure P is given by 

and for the chemical potential p one has 

- = - T ( T )  P T 81nQ =-In T 8 sh3(8,/2T) 
k T ,  M ,  T Erf &@T) - 2 / & a / T ) e x p (  - t@T) 

In the Table I the theoretical predictions concerning the critical behaviour 
of our model liquid are compared in the case of Ar with theoretical critical 
data following from the conventional MFA, as well as from some other 
models developed so far. 

TABLE I 

Reduced critical constants 

Experiment l 4  
van der Waals" 
Lennard-Jones & Dev.' 
Cernuschi & Eyring'" 
Bra&& and Williams4 
M FA -nonadditiv and 
q(0) = const. 
MFA-additive and q(0) 
dependence 
MFA-nonadditive and 
q(B) dependence 

3.15 1.28 0.12 
8.88 0.30 0.0 1 
1.77 1.30 0.43 
2.00 2.74 0.47 
2.00 3,OO 0.58 

3.15 2.67 0.30 

1.63 1.80 1.11  

3.15 1.33 0.37 
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THERMODYNAMICS OF A SIMPLE LIQUID 39 

It is evident that the improvement of the conventional MFA due to the 
use of nonadditive interactions (Eq. (9)) leads to critical values which are 
even better than those obtained in the highly superior quasichemical ap- 
proximation.*' Preliminary estimations of the effect of nonadditivity in- 
dicate that the improvement of the critical values is even more pronounced in 
terms of the quasichemical approximation. The additional inclusion of q 
on 6 dependence brings the critical temperature T,, to nearly coincide with 
the experimental value, whereas the agreement of P,, with the experimental 
data, although somewhat deteriorated, remains better than in all the models 
listed above. Hence the only phase transition produced by this model should 
be undoubtedly referred to as a gas-liquid one while like in all models of 
lattice gas statistics with only attractive interactions included, no changes in 
the thermodynamical functions witness the existence of a second phase 
transition which could be identified with the process of melting. 

Ill THE CRYSTAL-MELT TRANSITION 

Attempts to tackle fusion in terms of configurational statistics have so far 
either predicted the existence of a critical point K ,  for this phase transition7 
or lead to more realistic results (q, = co) at the expense of an extremely 
sophistication of the mathematical treatment.* Meanwhile it seems illumina- 
ting, that a critical point may be connected with a phase transition only 
between phases which can be distinguished on purely quantitative basis, 
e.g. both gas- and liquid-phases differ on the more or less important role 
which intermolecular interactions play. On the other hand such phases like 
the liquid and the solid reveal a qualitative difference in what concerns their 
internal symmetry. As far as a certain type of symmetry may be either present 
or not, it could be argued that there can be no continuous transition between 
them.28 As far as all attempts to construct an atomic scale picture of the melt- 
ing transition have failed so far to win universal acclaim2' one may invoke 
instead a well-known thermodynamic approach. In this paper we fix the 
crystal-melt phase transition at the interception point of the chemical 
potential of our model liquid and that of a perfect Einstein crystal which is 
assumed to represent adequately the properties of the solid phase. We show 
below that in spite of the extreme simplicity and, to some extent, artificial- 
ness of such approach some important conclusions about the thermo- 
dynamic behaviour of simple undercooled melts follow which are qualita- 
tively consistent with earlier experimental results on glassforming melts. 

Consider first the chemical potential ,ucryst of an ideal Einstein solid in 
which no configurational degeneracy exists, i.e. the number of locked lattice 
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vacancies present in solids at finite temperatures is negligibly smaller than 
the number of holes in the respective liquid. Using (3) and (6)  at 0 = 1, one has 
in this case 

In order to plot the p,, /kT, dependence on temperature at constant pressure 
one must first determine from Eq. (21) the 0 on T relationship for a certain 
pressure and then insert these data into Eq. (22). In Figure 7 both the chemical 
potential pls/kT,  (22) and the total entropy S = Sconf + Svib of our model 
liquid are plotted in dimensionless units versus reduced temperature TIT,, 
at nearly atmospheric pressure (for Ar P/P,, = 1/400). Consider first the 
pl,q/kT curve. There are two stable branches of this curve, namely AOB 
which corresponds to the condensed liquid phase and COD corresponding 
to the gaseous phase whose interception point 0 determines the boiling 
temperature & at normal pressure. As shown in Figure 7 one obtains for 
liquid Ar approximately &/T, z 0.37 which lies considerably below the 
experiment value of 0.58.’’ One may argue that such a discrepancy reflects 
the fact that P,, which follows from the present model is also considerably 

FIGURE 7 Dependence of the total entropy S-curve abcd, and of the chemical potential 
p/k7;-curve ABCD-on reduced temperature T ’  T,  at constant pressure P/P ,  = 1/400. The 
dashed line d N  represents the entropy of the respective perfect crystal. 
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FIGURE 8 Dependence of the chemical potential p / k T ,  on reduced temperature T/T,  in 
the case of a model liquid-curve AO. and of a perfect crystal with W,,,,,, = wh.-curve AE 
and with iWc,,,,,l > I wiq I -curve A’E’.  

higher than its experimental value (cf. Table I). Looking further at the 
entropy SIR dependence on temperature one may verify from Figure 7 that 
the entropy has a characteristic S-shaped form at the liquid-gas phase 
transition. The entropy of vaporization appears equal to S,, z 11.5R 
which, as mentioned earlier, is due to changes both in the configurational- 
and vibrational-components of the entropy and overestimates only slightly 
the empirically established average value of the Trouton’s rule. It is also 
evident from Figure 7 that the entropy vanishes when T goes to zero in line 
with the requirement of the Third Law of Thermodynamics (Nernst’s 
theorem) and that Maxwell’s rule of equal areas at the phase transition 
holds also for the entropy as function of temperature.? 

Consider next in more detail the process of melting. Although no dramatic 
changes in the behaviour of the thermodynamic functions mark the tem- 
perature T, of the phase transition crystal-melt one may look rather for the 
interception point between the graphs AE of Eq. (23) and A 0  of Eq. (22) 
in Figure 8. The point A which is thus the only common point between the 

7 The latter may be easily proved if one integrates the total differential of enthalpy dH = T . dS 
(at constant pressure) over the closed path MNcbM. 
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melt branch AOB (Figure 7) and that of the respective crystal appears at the 
origin and leads to the rather absurd result of T,/T, = 0. On the other hand, 
one may reasonably ad hoc determine T, either from the experimentally estab- 
lished ratio T,/T,, (T,/T, = 0.96 for Ar) or independently from the excess of 
the melt volume over the crystal one V,,,,,/r/;, = 0.88. Both methods lead 
unanimously to a finite melting temperature which in the present considera- 
tion is fixed at T,/T, = 0.35, that is, Eq (23) should properly intercept the 
liquid branch AOB at point J where T,/T, = 0.35. Consequently the only 
way out of the deadlock is to suppose that the energy bonds w, of an 
undercooled melt, provided it might be kept in metastable equilibrium even 
down at T = 0 where 8 = 1, are averagely weaker than those in the corres- 
ponding solid phase, i.e. wh < Wcryst is the necessary and sufficient con- 
dition to move down the curve AE to a new position A’E’ (cf. Figure 8). 

Therefore as a first major conclusion which follows from the present con- 
sideration one may claim that the zero enthalpy H (at T = 0) of an under- 
cooled melt must be higher than that of the respective crystal at T = 0. In 
Figure 8 the change in the Gibbs free energy A@ = N ( p , ,  - pcrysI) is repre- 
sented by the ordinata difference of the shaded area AJA’. A rough estima- 
tion gives in this case the value of KrysI/W(, x 1.01. A further consequence 
which immediately follows concerns the zero volume V;i, of the under- 
cooled melt. As far as a stronger attraction between the nearest neighbours 
inevitably leads to an additional contraction of the lattice, one should 
expect the zero volume of the undercooled melt VFq to exceed the volume 
of the crystal at T = 0. This conclusion is additionally supported by the 
fact that the extrapolation of excess densities of simple undercooled liquids 
at T = 0 appear to be nearly 3% lower than the packing density (0.7405) 
of f.c.c. or h.c.p. lattices of equal spheres.30 

One is thus forced to imagine the state of an undercooled melt in internal 
equilibrium at T + 0 as a perfectly ordered one (Sconf = 0 according to 
Nernst’s theorem), but with lattice parameters which necessarily differ from 
those of the respective perfect crystal so that at T-+0;1, Viq - Krys, > 0 and 
AH = H, ,  - Hcryst > 0. Consequently it is also evident that the description 
of melt to crystal transition should inevitably involve two different lattices: 
one for the liquid (from T = 0 up to Tr) and a second, corresponding to the 
crystal (from T = 0 up to T,). It appears difficult for the authors at present 
to suggest any reasonable picture of the nature of this fictive undercooled 
melt in internal equilibrium at T = 0, however, one should stress here, that 
the generality of this paradoxal result which, as discussed below, follows 
also from experimental thermodynamic evidence on typical glassforming 
melts is independent of the particular model employed in this paper. 

In Figure 9A we show the differences in the chemical potential and in the 
enthalpy of the melt over that of the crystal, as calculated from Eqs. (22) and 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
1
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



THERMODYNAMICS OF A SIMPLE LIQUID 43 

42 04 46 O B l I p  
Tm 

FIGURE 9 A-theoretically determined course of the differences in enthalpy-1, and in 
Gibbs free energy-2 of an undercooled melt over that o f a  crystal acc. to the present calculations. 
B-entropy difference between undercooled melt and crystal: experimental results for glycerol 
(Simon, 1931)-curve-fgh, extrapolated behaviour of an equilibrium melt under vitrification 
temperature Tg-2, and acc. to the present model-I, C-experimentally determined course of the 
thermodynamic functions for a typical glass-forming system (glycerol), as  measured by Simon 
(1931)-full line, and extrapolated by himself for the case of an undercooled melt in internal 
equilibrium-dashed line. 

(23) of the present model. The same is done in Figure 9B with the excess 
entropy of the melt over that of the crystal. On the same figure-Figure 9C 
are shown in dimensionless coordinates the classical investigations of 

over the temperature course of S ,  A@, AH which have been 
measured for a typical glassforming substance (Glycerol). Obviously there 
is a qualitative coincidence in the course of the respective thermodynamic 
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functions for both our model undercooled melt and for the extrapolated 
behaviour, proposed by Simon himself, of the fictive undercooled glycerol 
melt at T -+ 0. The only qualitative difference concerns the shape of the 
S(T)/T curve (cf. Figure 9B) which in the case of a simple model liquid is 
convex contrary to the concave form of the experimental S on T relationship 
which is typical for all glassforming melts. It is to be expected, as argued in 
Ref. 33, that this difference is caused by the more complex structure of typical 
glassforming melts in which effects of aggregation, polymerization, etc., 
are to be allowed for in the partition function. 

Quantitatively the entropy difference for the calculated curve at T, is only 
25% of the respective experimental value which undoubtedly is a short- 
coming of the employed model. Nevertheless, the qualitative behaviour 
of the thermodynamic properties of the system in the temperature interval 
0 I T I T, is correct and obeys strictly the requirements of the Third Law 
of Thermodynamics, that is, at T -+ 0, S -+ 0 and AH(T) ,  A@(() have a 
common tangent parallel to the T/T, axis. 

It is generally known, that typical glassforming systems vitrify at T = 
T, x (0.5 + O.7)TmI, according to the Beaman-Kauzmann’s rule TIT, % 213. 
Vitrification is in fact a kinetic process whereby at T = T,  the respective 
equilibrium structure of the melt is frozen in. Therefore under T, the thermo- 
dynamic differences between glass and crystal are practically constant with 
varying T ,  as shown for glycerol in Figure 9B, C. Although it is not possible 
in the framework of a purely thermodynamic treatment to determine the 
temperature of vitrification T, of our model liquid, it is evident, that if the 
Beaman-Kauzmann’s rule is obeyed a considerably lower entropy should 
be frozen in a substance similar to Ar. The lower excess entropy frozen in at 
T = in the case of simple liquid, such as Ar, results in a higher energy 
differences (cf. Eq. 9A, C) between the hypothetical vitrified melt and the 
respective crystal which may be interpreted as thermodynamic explana- 
tion for the unsuccessful attempts to vitrify a genuine simple liquid, such as 
rare gases. 
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